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Abstract
The study presents a comprehensive stand-level model for the tree diameter distribution. A Gompertz type stochastic

logistic growth law is used for describing diameter distribution. Using the Gompertz type stochastic law of tree diameter
growth, the age and height dependent probability density function of diameter distribution is obtained. The mean age-
diameter, height-diameter growth trends and their variances for the Gompertz type stochastic differential equation are
derived. The expected tree diameter distribution is predicted by using the Fokker-Plank equation and stand measurements.
The estimates of parameters are performed by the L1 distance procedure. The Weibull, and negative exponential
distributions are selected to study their performance to the observations. To evaluate the goodness-of-fit, the absolute
discrepancy, Kolmogorov-Smirnov, and Reynolds error index statistics are adapted. In addition, for estimating the goodness-
of-fit, the Chi-squared test, pseudo-residuals, and Shapiro-Francia statistic are arranged, and the normal quantile plot is
described. To model the diameter distribution, as an illustrative experience, a real data set from repeated measurements
on permanent sample plots of pine stands in Dubrava forest district is used. The results are implemented in the symbolic
computational language MAPLE.

Key words: Weibull, Gompertz, negative exponential, diameter distribution, stochastic growth law, Fokker-Plank
equation

Introduction

Forest as association of geo-bio ingredients has
stochastic nature. It consists of nucleus of a biotic
communions and abiotic environment. Stand as a com-
munity of trees is the main component of the forest.
Stand consists of trees with different heights and di-
ameters. Those differences depend on a lot of un-
searchable genetic and environmental factors, there-
fore it leads to consideration that diameter and height
of trees are random variables. The theory of probabil-
ity declares that random variable could be fully de-
scribed knowing distribution of its values. Distribu-
tion function gives us detailed view of random varia-
ble while mean value only general view.  Distribution
functions of diameter, height, and volume are impor-
tant for forest theory and practice. Those distributions
depend on age of stand and site type. Forest type is
defined by tree species, age of a stand (age class), site
type. Site type is described by mean height of trees.

The main goal of forest inventories is unbiased
assessment of the increment and yield of wood. It is
evident that stand vise forest inventory due to limit-
ed human and financial resources is unrealizable. As
a solution sampling methods are used. To get data of

known accuracy and confidence, sampling must be
organized on a scientific base. Due to reliability and
economy of obtained results, it is expedient to approx-
imate sampling data by multiply distribution functions.
Tree species diameter distribution functions should
describe all inventory unit according to age and site
type. Inventory unit for stand wise forest inventory
might be forest holdings and all country forests for
sample based national inventory.

The study presents a comprehensive stand-level
model for the tree diameter distribution that might be
used in sample based national inventory.

Diameter is an important element in forest stand,
as well as height, basal area, stand volume and number
of trees. The distributions of tree diameter in stands
describe forest structure and are used for the assess-
ment of stand volume and biomass (Chen 2004), for-
est biodiversity (Uuttera et al. 1995), density manage-
ment (Newton 1997, Sterba 2004, Newton et al. 2005).
The idea to describe the distribution of diameter in a
stand is the ultimate question for foresters. There are
three types of approaches for this purpose (Mehtata-
lo 2005 and references therein). The first approach is
based on a sample of diameters of a stand (Tang et
al. 1997, Mehtatalo 2005). The second approach is
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based on parameters prediction in which parameters
of a probability density function are predicted from
some easily measured stand characteristics (Lindsay
et al. 1996, Alvarez et al. 2002, Newton et al. 2005).
In the third parameter recovery approach parameters
of the probability density function are predicted from
some easily measured stand-level variables (Lindsay
et al. 1996, Cao 2004, Chen 2004, Dieguez-Aranda et
al. 2005). The last two approaches can be conjoined
and called the probability density function method.
The probability density function method exploits di-
rectly the fact that all observations should come from
the same distribution law. There are several ways of
determining this theoretical distribution, such as neg-
ative exponential distribution (Meyer et al. 1943, Leak
1996), Pearson distribution (Schnur 1934), gamma dis-
tribution (Nelson 1964), lognormal distribution (Bliss
et al. 1964, Chen 2004), beta distribution (Clutter et
al. 1965, Chen 2004), Weibull distribution (Weibull
1951, Bailey et al. 1973, Maltamo et al. 2000, Zucchi-
ni et al. 2001, Cao 2004, Chen 2004, Dieguez-Aranda
et al. 2005, Mehtatalo 2005, Newton et al. 2005, West-
phal et al. 2006, Nord-Larsen et al. 2006), Johnson
distribution (Tham 1988, Hafley et al. 1977, Zucchini
et al. 2001, Chen 2004), double�normal distribution
(Bruchwald 1988), Charlier distribution (Prodan 1953),
Pearl-Read distribution (Nelson 1964), de Liocourt dis-
tribution (1898), semi logarithmic distribution (Sterba
2004), finite mixture distribution (Zucchini et al. 2001,
Zasada et al. 2005), bivariate distribution (Knoebel et
al. 1991, Uusitalo et al.1998, Tewari et al. 1999,  Zuc-
chini et al. 2001, Li et al. 2002), and much more. The
history of mathematical modeling of diameter distribu-
tion have pointed out that most part of theoretical
distributions fits for the pure even-aged stands. Com-
prehensive tree diameter distribution studies have
demonstrated that diameter is not normally distribut-
ed (Bliss et al. 1964, Mehtatalo 2005, Nord-Larsen et
al. 2006).

Conventionally, the Weibull law is applied for
characterizing the diameter distribution. The probability
density function of the Weibull law has the following
form (Weibull 1951)
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where a, b, c are the location, scale, shape parame-
ters, and x is tree diameter of breast height. Mostly,
as indicated by Cao (2004), the parameters a, b, c are
estimated by the technique of multiple regression us-
ing the predictor stand-level variables such as the
stand age in years, the dominant height in meters, the
number of trees per ha, and the relative spacing.

The main goal of this study is to deduce the orig-
inal mixture of the Gompertz type (Gompertz 1825, Anan-
da et al. 1996) transition probability density functions
fitted for the modeling of diameter distributions of trees
in even-aged, and uneven-aged stands. Our presented
method of tree diameter distribution by the age or the
height dependent probability density function applies
measurements of stand variables such as age, height,
diameter at breast height. This age and height depend-
ent tree diameter distribution accumulates additional age,
height, species structure information of stands. This
method combines the parameter prediction and param-
eter recovery approaches. The parameters of the distri-
bution function are recovered from the Gompertz type
dynamic diameter growth law, which trajectory is gov-
erned by a standard Brownian motion (Rupðys 2004,
2005). Because the extent of unknown variability of tree
diameter is associated with forest growth processes, we
incorporate stochastic structure in tree diameter growth
model and hold transitions among diameter classes on
the subject of the age and height. Our used Gompertz
type stochastic growth law includes biologically rele-
vant nonlinear mechanisms of diameter growth. For the
modeling of diameter growth, we used the state space
stochastic differential equation approach (Garcia 1983,
1994, 2005, Rupðys 2003, 2005; Matis et al. 2003). This
approach applies stochastic differential equations and
improves characterization of actual diameter growth
(Garcia 2005). For the estimation of parameters, the
maximum likelihood procedure or L1 distance procedure
(Shoi et al. 1997, Shoi 1998, Rupðys 2004, 2005) is used.
In this paper we apply the L1 distance procedure
(Rupðys 2005). However, in practice it is not simple to
materialize our presented model of the tree diameter dis-
tribution.

For validation, the developed mixture distribution
is compared to the Weibull and negative exponential
distributions. To evaluate the goodness-of-the-fit be-
tween the field data and the estimated distribution,
three statistics are calculated: the absolute discrep-
ancy (Westphal 2006), the Kolmogorov-Smirnov (Ku-
bilius 1980), and the Reynolds error index (Reynolds
et al. 1988). Finally, the Chi-squared test (Nikulin
1973), the pseudo-residuals (Zucchini et al. 1999) are
examined, and the Shapiro, and Francia statistics W�
(Shapiro et al. 1972), for evaluating the straightness
of a normal quantile plot, is calculated.

Material and methods

Data

The diameter analysis is based on experiments in
pine stands of Dubrava forest district. These stands
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have been measured 5 times on stand variables: age,
number of trees per hectare, breast height diameter,
trees position co-ordinates, age and height on each
tenth tree. The measurements have been conducted in
34 permanent treatment plots, and the initial planting
densities are unknown. Plot area is 0.25 ha. The age
of stands ranges from 12 to 103 years. The mean of
diameter at breast height varies from 2.5 to 51 cm.
Approximately 10% of trees in all plots are randomly
selected for the height measurement. The observed
data of study plots are presented in Figure 1.

 

 

a)

b)

Figure 1. Plot of the diameter including data from pine for-
ests at Dubrava district in Lithuania: a) the age dependent,
b) the height dependent

Technique
Suppose the dynamics of diameter growth is ex-

pressed in terms of the Gompertz type stochastic or-
dinary differential equations (Rupðys 2003)
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where r1, r2 are the diameter intrinsic growth, K1, K2are the diameter carrying capacity and forms a numer-
ical upper bound on the diameter size, and x(t), x(h)
are the tree breast height diameter at age t , and height
h, s1, s2 are the intensity of noises, W(t), W(h) are
scalar Brownian motions. This diameter growth model
uses two transition functions expressed as the stochas-
tic differential equations, which project the future of
tree diameter subject to the age or height. A proba-
bility density function of tree diameter distribution can
be obtained from the Fokker�Plank, or forward Kol-

mogorov equation (Gihman et al. 1977), which relates
the variation of tree diameter with the age (height).
The nature of diameter growth allows us to choose the
Ito stochastic calculus. Each solution of the stochas-
tic differential equations (2)-(3) describes one path of
diameter development. The ensemble of realizations,
described by transitional probability density function
p1(x,t) (p2(x,h)) , satisfies the corresponding Fokker�
Plank equation
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The solution of the Fokker�Plank equations (4)-
(5) describes the evolution of probability density func-
tion of tree diameter through age (height). In the se-
quel we assume that initial tree diameter is not ran-
dom and known exactly x(t0) = x0.The transformation

y(t) = ln(x(t)) (y(h) = ln(x(h)) )
the diffusion term sx(t) (sx(h)) in stochastic model
(2)-(3) converts to s and the nonlinear process (2)-(3)
transforms into the Ornstein-Uhlenbeck process (Gih-
man et al. 1977, Soboleva et al. 2003). So, we can find
the age (height) dependent solution of the Fokker-
Planck equations (4)-(5). The solution of equation (4)-
(5) has the following form
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Using the time (height) dependent probability
density functions (6)-(7), we can analyze the behav-
ior of the mean trend  mt = E(x(t)) (mh = E(x(h))) and
variance st = V(x(t)) (sh = V(x(h))) of tree diameter.
When the instantaneous fluctuation is proportional to
diameter x(t) (x(h)), then the mean trend and variance
of tree diameter fulfill the system of ordinary differ-
ential equations

( )











++







−=

−=

,2ln2

,
2

ln

22
1

1
1

11
1

tt
t

t
t

t

t

t

t
t

sm
m

K
sr

dt

ds

m

sr

m

K
mr

dt

dm

σ
 (8)

P. RUPÐYS ET AL.
BALTIC FORESTRY

THE GOMPERTZ TYPE STOCHASTIC GROWTH LAW AND A TREE DIAMETER DISTRIBUTION

ISSN 1392-1355

199

2007, Vol. 13, No. 2 (25)



( )











++







−=

−=

.2ln2

,
2

ln

22
2

2
2

22
2

hh
h

h
h

h

h

h
h

h

sm
m

K
sr

dh

ds

m

sr

m

K
mr

dh

dm

σ

 (9)

The general formal structure of the tree diameter
probability density function )),,,,( σKrhtxp can be de-
fined as a mixture of two probability density func-
tions ),,,( 1111 σKrtxp , ),,,( 2222 σKrhxp . Consequently,
mixed probability density function ),,,,( σKrhtxp  is ex-
pressed as a weighted sum of density functions

),,,( 1111 σKrtxp , ),,,( 2222 σKrhxp  in the following form
),,,(),,,(),,,,( 2222211111 σσσ KrhxpwKrtxpwKrhtxp +=  (10)

where 1,0 21 ≤≤ ww , 121 =+ ww

Now we consider the estimate of parameters of
probability density function ),,;,( σKrhtxp  using the
Gompertz stochastic diameter growth models (2)-(3).
The parameters of the stochastic differential equations
(2)-(3) can be estimated by the maximum likelihood
procedure or the L1 distance procedure (Rupðys 2004,
2005).

The maximum likelihood function of the observ-
ed data ( )







 = nixt ii ,...,2,1,,  (               ), has the follow-

ing form (Rupðys 2004)
( )









= nixh ii ,...,2,1,,

( ) ∑∑
==

−
−

− 






+











+

−
−=

n

i

ii
i

n

i

i
i

ii xp
dx

xd
V

V

Etx
KrL

02

1
1

2
1

1111 )(
)(

ln)2ln(
)(ln

2

1
),,(

'

φ
πσ  (11)

( ) ∑∑
==

−
−

− 




+












+

−
−=

n

i

ii
i

n

i

i
i

ii xp
dx

xd
V

V

Ehx
KrL

02

1
1

2
1

2222 ,)(
)(

ln)2ln(
)(ln

2

1
),,(

'

φ
πσ  (12)

where n� is the number of the different ages (heights)
of the observed data, ')( ii xtx = ( ')( ii xhx = ), '

ix  is the
average of the observed data at time t i, (hi)Dt i-1=t i-t i-1,

'...10 n
ttt <<< (Dhi-1=hi-h i-1, '...10 n

hhh <<< ), pi(.) is the
density function of the i-th observation (in the sequel
we assume that it follows the normal distribution),
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The maximum likelihood procedure may be fail
when we own a few data points that are not explained
by the model or we use large amounts of observed data.
So, instead of maximizing the likelihood function, we
minimize the L1 distance between the empirical densi-
ty function (histogram) pe(x,t) (pe(x,h)) and the esti-
mated density function ),,;,( σKrhtxp . For the sake
of simplicity, we consider the estimate of parameters
of the separate function ),,,( 1111 σKrtxp

( ),,,( 2222 σKrhxp ). Empirical density function
pe(x,t) (pe(x,h)) depends on the observed data and
estimated density function  ),,,( 1111 σKrtxp

( ),,,( 2222 σKrhxp ) depends on the used stochastic
growth law. The L1 distance has the following form
(Rupðys 2005)
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where m is the number of steps, [ ]max;0 Tt
j ∈ ,

( [ ]max;0 Hh
j ∈ ),.j=1,2,...m. In order to simulate numer-

ically the integral defined by the right-hand side of
equations (13)-(14), we define the empirical density as
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j ⋅∆= 1 , D1 is the step size
( { }{ }2/12/12/2/
1 ∆+<≤∆−∆+<≤∆− j

k
ji

k
i hhhxxx is one if the obser-

vation xk is in [ [2/;2/ ∆−∆− ii xx , the observation hk is
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hh  and zero otherwise, jh j ⋅∆= 1 ,
D1 is the step size). Hence, the numerical approxima-
tion of equation (13)-(14) takes the form
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Our interest centers on the minimizing of the L1

distance function defined by (15)-(16). Hence
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In this study derived mixture (10) of probability
density functions is compared to the commonly used
Weibull distribution with probability density function
(1) and the negative exponential distribution with prob-
ability density function
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In addition, we use the Chi-squared test to eval-
uate the goodness-of-fit of the estimated probability
density functions to the observations of diameter fre-
quency distribution. If the calculated p-value of the
test is more than a significance level (0.01), then we
cannot reject the null hypothesis that the estimated
distribution is coincident with the empirical distribu-
tion. Conversely, if the Chi-squared test rejected the
null hypothesis, it merely means that the estimated tree
diameter distribution and the width of the diameter
classes were not perfectly selected. Consequently, an
error probability (the significance level) is chosen 0.01.

The Chi-squared test is normally applied for the
univariate distributions. Our Gompertz type probabil-
ity density functions (6)-(7) of tree diameter distribu-
tion depend on the age and height. So far, the only
way to carry out the Chi-squared test is to describe
the diameter distribution by a set of overlapping the
Gompertz type distributions, which depend on sepa-
rate age and height classes. The overall diameter dis-
tribution of tree in a stand is expressed as the mixture
of diameter distributions at different definite ages
(heights). The mixture of probability density functions
of tree diameter could be described in the following
form
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where m1 is the  number of groups according to the
age classes, m2 is the  number of groups according to
the height classes, lj is the part of the stand with j
age trees, wj is the part of the stand with  height trees.
The weights 2

1, 21 =αα , l j, wj are calculated using the
observed data set and presented in Table 1. The mean
values of age and height class are presented in Table
1 too.

Considering the limitations of the Chi-squared
test, we calculate three other type of the goodness of

Class s 
ean 

1 2 3 4 5 6 7 8 9 10 

0.4352 0.0556 0.0860 0.0873 0.0961 0.1107 0.0721 0.0405 0.0114 0.0051 

16.0203 25.7841 34.4559 44.1087 54.3355 64.2229 74.0000 83.7031 94.0556 101.6250 

0.0765 0.3618 0.0500 0.0949 0.1075 0.1278 0.1290 0.0474 0.0051  

t) 3.3248 5.4598 9.7911 14.0487 17.8288 21.8005 25.7338 29.0360 32.7500  

 

Table 1. Weights and mean values used in the Gompertz type
density mixture

fit statistics, namely, the absolute discrepancy, the
Kolmogorov-Smirnov, and the Reynolds error index.

The absolute discrepancy (AD) measures the dif-
ference between empirical distribution and the estimat-
ed distribution and has the following form
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where m is the number of diameter classes, 
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the relative frequencies of trees in diameter classes of
the estimated and empirical distributions. The estimated
and empirical distributions have nothing in common
if AD=1, they are identical if AD=0.

The Kolmogorov-Smirnov statistics (KS) has the
following form
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where n is the number of observations, ( ))( jj xFu = , F
is the estimated cumulative distribution function, and
the x(j) are observations sorted in ascending order for
diameter.

The Reynolds error index (EI) has the following
form

∑
=
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1

where in
∧

, ni are the estimated and empirical number
of trees in diameter class i. The Reynolds error index
is calculated in 5 cm classes using the number of sam-
ple trees as weight.

Next we use the so-called pseudo-residuals de-
fined by Zucchini and MacDonald (1999) as an alter-
native method for the assessment of the goodness-
of-fit. The key assumptions are that observations X1,X2, �, Xn are independent and have distribution func-
tion Fi(x) (note, that Xi

 are not assumed to be identi-
cally distributed). The pseudo-residual, ri, correspond-
ing to observation xi is defined as

where 1−Φ  denotes the inverse function of the distri-
bution function of the standard normal distribution.

( )( )iii xFr 1−Φ= , ni ,...,2,1= , 
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It is shown (Zucchini et al. 2001) that pseudo-residu-
als ri, ni ,...,2,1=  follow the standard normal distribu-
tion if estimated density function f i(x) is indeed the
correctly specified density function for the observa-
tions X1, X2, �, Xn. A basic graphical approach for
checking normality of the pseudo-residuals r i,

ni ,...,2,1=  is the normal quantile plot (Wilks et al.
1968, Looney et al. 1984). The normal quantile plot
compares the ith ordered value r(i) with the i/(n+1)th
quantile (rankits) of the standard normal distribution
defined by

More alternative types of plotting positions we
can see (Gan et al. 1991). A sample from the standard
normal distribution will result in straight line r=q on
a normal quantile plot. Any deviation from this line
will indicate lack of fit of the estimated probability
density function of diameter distribution. A normal
quantile plot is sensitive in detecting distinctions in
the tail region of tree diameter distribution. In our
study, the curvature of a normal quantile plot is ex-
ploited to validate or reject the estimated tree diame-
ter distribution. To assess significance of departures
from linearity of the normal quantile plot, we addition-
ally calculate 1% upper and lower simulation envelopes
(Diggle 1983) and plot against qi, ni ,...,2,1= .

Results and discussion

The all used probability density functions are fit-
ted to the observations described in Figure 1 using
the L1 distance procedure. The width of the diameter
classes is chosen approximately 5 cm. The L1 distance
functions (15)-(16) are minimizing for the estimation of
parameters of the probability density functions defined
by (1), (6), (7), (17). The resulting L1 distance func-
tions are nonlinear in parameters and so cannot be
solved exactly. For the calculation of estimates, a
number of iterative procedure can be used. It is known
that the iterative procedures may converge very slowly,
or oscillate widely, or may not converge at all. So, we
use a Monte Carlo approach. The results are present-
ed in Table 2.

It will be observed that the L1 distance values
obtained in predicting parameters for all used distri-
butions are very similar (see Table 2).

Figure 2 shows empirical probability density func-
tion (histogram) ),( j

e txp  ( ),(
j

e hxp ) j=1,2...,4
and estimated probability density function

),,,( 1111 σKrtxp
j  ( ),,,( 2222 σKrhxp

j ) j=1,2...,4 for









+
Φ= −

1

1

n

i
q i , ni ,...,2,1= . 

the given four ages 20, 40, 60, and 80 years (four
heights 5, 15, 25, and 35 metres). The fit is not always
so good. Indeed, for the age L1 distance is 0.3402.

Parameters of the Gompertz type 

density  Study case 

r K σ 

L
1 norm 

Age (6) 0.0331 45.5459 0.0794 0.3402 

Height (7) 0.0793 51.2156 0.1037 0.2818 

Parameters of the Weibull and  negative 

exponential densities  

a b c 

L
1 norm 

Weibull (1) 0.9380 21.5020 1.3887 0.3119 

Exponential (17) 0.0469 -0.0545  0.3845 

 

Figure 2. Plot of the empirical and estimated Gompertz type
probability density functions: a) the ages 20, 40, 60, and 80
years, b) the heights 5, 15, 25, and 35 metres

 

 

a) Age

b) Height

Table 2. Parameter estimates for predictive diameter distri-
butions

By examining Figure 2 it is clear that the varia-
tion of tree diameter is low for small values of age
(height) and increases for higher values of age (height).
To show this variation, the probability density func-
tions ),,,( 1111 σKrtxp , ),,,( 2222 σKrhxp  are plotted in Fig-
ure 3.

To provide equations for diameter growth, two
different dynamic diameter growth age dependent and
height dependent models (2)-(3) are differentiated in
this study. Using the estimates of parameters present-
ed in Table 2, we calculate a numerical approximation
of the solutions of the system equations (8)-(9), which
represent mean diameter growth trend and variance.
The numerical approximations of mean trend and the
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standard deviation of tree diameter are plotted in Fig-
ure 4. For both models, the estimated diameter trajec-
tories are very close. The above illustrations in Fig-
ures 2, 3, 4 exemplify some interesting kinetic features
of diameter distribution, when the age and height are
predictors. The mean trend of diameter evolves mo-
notonically toward the value of the diameter carrying
capacity K. The diameter variance over age (height)
grows monotonically towards the steady state value.

Figure 5 shows the empirical and estimated (mix-
ture (18), Weibull (1) and negative exponential (17))
diameter probability density functions as an example
of a preference of the Gompertz type mixture (18). The

age and height dependent mixtures (10), (18) produce
the diameter distribution at various stages of stand
development and provide forest managers with a tool
for assessment of stands.

The summaries of the goodness-of-fit of the ab-
solute discrepancy, Kolmogorov-Smirnov and Rey-
nolds statistics are presented in Table 3.

Figure 3. Plot of the Gompertz type probability density
functions: a) the age dependent ),,,( 1111 σKrtxp , b) the height
dependent ),,,( 2222 σKrhxp

b)

a)

 

 

Figure 4. Plot of the diameter growth (mean trend - solid
line, mean trend ±  standard deviation � dash line): a) the
age dependent, b) the height dependent

 

Figure 5. Empirical and estimated diameter distributions: the
Gompertz type mixture (18) - solid line, the Weibull (1) �
dot line, the negative exponential (17) � dash line, the em-
pirical � piecewise linear

Table 3. Goodness-of-fit statistics and shi-square test

An analysis of the results in Table 3 indicates that
AD and EI tests ranked all used distributions very
similar. Our derived mixture (18) of ranked best among
the used distributions and the negative exponential
was the poorest performer. In comparison to the
Weibull distribution (1), which successfully describes
unimodal diameter distributions, this mixture reduced
the AD statistic by 77%, the KS statistic by 63%, and
the EI statistic by 77%. We use the Chi-squared test
to test the hypothesis that the empirical and estimat-
ed distributions are statistically identical, with signif-
icance 1%. Verifying the null hypothesis that the di-
ameter distribution of tree has the estimated form (mix-
ture (18), Weibull, negative exponential) against the
alternative hypothesis that this distribution differs
from estimated was calculated p-value. For the mixture
(18), the p-value 0.0387 indicates a large amount of
evidence that this mixture distribution has good per-
formance.
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Statistics 
Density 

AD KS EI 
( )2Pr χ>Xob  ( 2χ ) 

Gompertz type (18) 0.0393 0.0705 124 0.0387 (14.7956) 

Weibull (1) 0.1727 0.1911 547 <0.0001 (229.3710) 

Exponential (17) 0.1738 0.1101 549 <0.0001 (166.3869) 

 



The normal quantile plots of pseudo residuals of
all estimated diameter distributions together with their
envelopes are shown in Figure 6.

choice of theoretical distribution. The main goal of this
study was to introduce a new method for the mode-
ling of diameter distribution of tree, demonstrate its
use, show how the proposed method works to the field
data set, and compare with two commonly used prob-
ability density functions of tree diameter distribution
� the Weibull distribution, and the negative exponen-
tial distribution. It was found that the Gompertz type
mixture of probability density functions fits the ob-
served data very well. The proposed method can be
used in practical forestry applications.

In the final note, we wish to point out that the
method implemented here for obtaining the diameter
distribution, based on postulated total diameter growth
kinetics as a function of the age (height), can be mod-
ified incorporating more growth laws. For example, we
can assume that the Verhulst, Bertalanffy, Mitcherlich,
Richards (or their modifications) laws describe diame-
ter growth curves best.

The mixture of probability density functions of
tree diameter distribution can be expanded for other
predictor stand-level variables, for example, the number
of trees per ha, the relative spacing, the site occupan-
cy, etc.

To cover more dynamic stochastic diameter growth
laws, the diffusion term can be changed too.

In order to propose more precise dynamic sto-
chastic growth law, the stochastic delay differential
equations can be used.
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ÑÒÎÕÀÑÒÈ×ÅÑÊÈÉ ÇÀÊÎÍ ÐÎÑÒÀ ÒÈÏÀ ÃÎÌÏÅÐÒÖÀ È ÐÀÑÏÐÅÄÅËÅÍÈÅ
ÄÈÀÌÅÒÐÀ ÄÅÐÅÂÜÅÂ
Ï. Ðóïøèñ, Ý. Ïÿòðàóñêàñ, Þ. Ìàæåéêà è Ð. Äÿëòóâàñ
Ðåçþìå

Â ñòàòüå ðàññìàòðèâàåòñÿ âîïðîñû ðàñïðåäåëåíèÿ äåðåâüåâ ïî äèàìåòðó. Â îñíîâó ðàçðàáîòêè ìîäåëè
ðàñïðåäåëåíèÿ ïîëîæåí âåðîÿòíîñòíûé ëîãèñòè÷åñêèé çàêîí ðîñòà. Èñïîëüçóÿ ñòîõàñòè÷åñêèé çàêîí ðîñòà Ãîìïåðòöà
ðàçðàáîòàíà ôóíêöèÿ ðàñïðåäåëåíèÿ äåðåâüåâ ïî äèàìåòðó â çàâèñèìîñòè îò âîçðàñòà è ñðåäíåé âûñîòû äðåâîñòîÿ. Â
ñòàòüå ïðèâîäÿòñÿ ñðàâíåíèÿ ðàçðàáîòàííîé ìîäåëè ñ ðàñïðåäåëåíèåì Âåéáóëëà è îòðèöàòåëüíûì ýêñïîíåíöèàëüíûì.
Äîêàçàíî ïðåèìóùåñòâî ðàçðàáîòàííîé ìîäåëè. Ìîäåëèðîâàíèå ðàñïðåäåëåíèÿ äèàìåòðà îñóùåñòâëåíî íà ðåàëüíûõ
äàííûõ, ïîëó÷åííûõ íà ïðîáíûõ ïëîùàäÿõ â Äóáðàâñêîì ëåñõîçå. Ðàçðàáîòàííóþ ìîäåëü ðàñïðåäåëåíèÿ äåðåâüåâ ïî
äèàìåòðó öåëåñîîáðàçíî èñïîëüçîâàòü äëÿ ìîäåëèðîâàíèÿ ðîñòà  èíâåíòàðèçàöèè ëåñîâ. Â ðàáîòå èñïîëüçîâàí ÿçûê
MAPLE.
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